terça-feira, 24 de abril de 2012

O Telescópio Espacial Hubble foi lançado para o espaço há 22 anos

O Telescópio Espacial Hubble é um satélite que transporta um grande telescópio para a luz visível e infravermelha. Foi lançado pela agência espacial norteamericana - NASA - em 24 de abril de 1990, a bordo do Vaivém Espacial  Discovery (missão STS-31). Este telescópio já recebeu várias visitas espaciais da NASA para a manutenção e para a substituição de equipamentos obsoletos ou inoperantes.
O Telescópio Espacial Hubble é a primeira missão da NASA pertencente aos Grandes Observatórios Espaciais - (Great Observatories Program), consistindo numa família de quarto observatórios orbitais, cada um observando o Universo em um comprimento diferente de onda, como a luz visível, raios gama, raios-X e o infravermelho. Pela primeira vez se tornou possível ver mais longe do que as estrelas da nossa própria galáxia e estudar estruturas do Universo até então desconhecidas ou pouco observadas. O Hubble, de uma forma geral, deu à civilização humana uma nova visão do universo e proporcionou um salto equivalente ao dado pela luneta de Galileu Galilei no século XVII.
Desde a concepção original, em 1946, a iniciativa de construir um telescópio espacial sofreu inúmeros atrasos e problemas orçamentais. Logo após o lançamento para o espaço, o Hubble apresentou uma aberração esférica no espelho principal que parecia comprometer todas as potencialidades do telescópio. Porém, a situação foi corrigida numa missão especialmente concebida para a reparação do equipamento, em 1993, voltando o telescópio à operacionalidade, tornando-se numa ferramenta vital para a astronomia. Imaginado nos anos 40, projetado e construído nos anos 70 e 80 e em funcionamento desde 1990, o Telescópio Espacial Hubble foi assim batizado em homenagem a Edwin Powell Hubble, cientista que revolucionou a Astronomia ao constatar que o Universo se estava a expandir.


sábado, 14 de abril de 2012

Curso de Astronomia em Leiria


CURSO DE INICIAÇÃO À ASTRONOMIA

APRENDA A APRECIAR A NOITE PARA CONHECER AS MARAVILHAS DO CÉU

José Matos (astrónomo da FISUA)

No próximo dia 28 de abril de 2012, das 14.30 às 19.30 e das 21.30 às 23.30 horas, irá decorrer nas instalações do Centro de Interpretação Ambiental de Leiria, um Curso de Iniciação à Astronomia.

O ABC do céu é um curso de iniciação destinado a todos os observadores interessados em conhecer o céu noturno e técnicas de observação. Haverá também uma sessão prática de observação noturna ao telescópio.

Público–alvo: maiores de 14 anos.

Os interessados deverão proceder à sua inscrição através do e-mail: cia@cm-leiria.pt.

A inscrição tem um custo de 25€.

Para mais informações, podem contactar o Centro de Interpretação Ambiental de Leiria, através do telefone 244 845 651.

Ficheiro de Apoio:

NOTA: o local da formação é aqui:

Huygens nasceu há 383 anos

Christiaan Huygens (Haia, 14 de abril de 1629 - Haia, 8 de julho de 1695) foi um matemático, astrónomo e físico neerlandês. Descobriu os anéis de Saturno. Em homenagem ao seu trabalho, a sonda Cassini-Huygens foi batizada com o seu nome.
Galileu Galilei foi o primeiro a observar os anéis de Saturno, porém seu instrumento (telescópio) não lhe permitiu identificar com clareza os anéis. Galileu acreditava, pelas imagens obtidas, que Saturno era um sistema planetário triplo. Huygens, com um telescópio mais poderoso, pode identificar os anéis e descobrir Titã, a maior lua de Saturno e a segunda maior do sistema solar, em 1655.
Huygens também se dedicou ao estudo da luz e cores. Desenvolveu uma teoria baseada na concepção de que a luz seria um pulso não periódico propagado pelo éter. Através dela, explicou satisfatoriamente fenómenos como a propagação retilínea da luz, a refração e a reflexão. Também procurou explicar o então recém descoberto fenómeno da dupla refração. Seus estudos podem ser consultados em seu mais conhecido trabalho sobre o assunto, o "Tratado sobre a luz".
Discordava de vários aspectos da teoria sobre luz e cores de Isaac Newton (1643-1727), que era baseada implicitamente numa concepção corpuscular para a luz. Discutiu com ele durante muitos anos, mas, ao contrário do que geralmente se acredita, suas teorias nunca tiveram uma disputa em grandes proporções.


Há 42 anos a Apollo XIII teve um problema...


Apollo XIII
Insígnia da missão
                                 Estatísticas da missão                             
Módulo de comando Odissey
Módulo lunar Aquarius
Número de tripulantes 3
Lançamento 11 de abril de 1970
Cabo Kennedy
Alunagem cancelada
Aterragem 17 de abril de 1970
Duração 5 d 22 h 54 m 41 s
Imagem da tripulação
Esq. p/ dir: Lovell, Swigert, Haise
Da esquerda para a direita: Lovell, Swigert, Haise


Tripulação

Parâmetros da missão
Apollo XIII foi a terceira missão tripulada do Projeto Apollo com destino à Lua, mas não cumpriu a missão devido a um acidente durante a viagem de ida, causado por uma explosão no módulo de serviço, que impediu a descida no satélite. A nave e seus tripulantes, entretanto, conseguiram retornar à Terra, após seis dias no espaço.


“Houston, temos um problema”

A Apollo XIII foi lançada cerca de cinco meses após a Apollo 12 ter retornado da Lua. Durante os primeiros dois dias da missão a viagem estava tranqüila, desafiando os presságios dos supersticiosos com relação ao número 13. Às nove horas da noite, hora de Houston, centro do controle da missão e da espaçonave, do dia 13 de abril, a tripulação tinha acabado de fazer uma rotineira transmissão de TV. O comandante James Lovell e o piloto do módulo lunar 'Aquarius' Fred Haise, completavam um check in do módulo e o piloto do módulo de comando Odissey 'Jack' Swigert estava-se a preparar para ver algumas estrelas através do sextante. Com 55 horas e 55 minutos de missão, todos os três astronautas ouviram e sentiram um grande barulho nas entranhas da nave. Durante os próximos minutos, a medida que eles e os controladores de terra faziam uma avaliação dos prováveis danos elétricos causados na nave espacial, ficou aparente que os tripulantes estavam em sérias dificuldades. Se eles quisessem sobreviver precisariam de força, oxigénio e água suficientes para uma viagem de quatro dias em volta da Lua e de volta a Terra, mas sem um módulo de comando saudável esses três itens de sobrevivência não conseguiriam durar até o fim da jornada. Além de pouca reserva destas necessidades básicas, sem força no MC eles teriam que contar com o Sistema de Controle Ambiental do Módulo Lunar para remover o excesso de dióxido de carbono da cabine. O módulo Aquarius carregava filtros de reserva, mas a maioria deles estavam guardados no ALSEP (o pequeno conjunto de experimentos científicos para uso na Lua, carregado pelo ML, apenas acessíveis pelo lado de fora), completamente fora de alcance. Simplesmente eles não tinham filtros de hidróxido de lítio suficientes para controlar a quantidade de dióxido de carbono expelida pelos três astronautas. E para tornar tudo mais dramático, a tripulação estava voando numa trajetória em direção da Lua que não os permitiria voltar a Terra sem uma boa ignição dos motores. O motor principal, claro, era instalado na traseira do Odissey e, sem o suprimento de força, dava no mesmo se a tripulação o tivesse deixado em Cabo Canaveral.
A equipe do Programa Apollo tinha grande orgulho de sua capacidade e se houvesse um jeito de improvisar e trazer a tripulação a salvo para casa, eles encontrariam um. A medida que eles analisavam a situação – tanto a tripulação quanto o pessoal de terra – concluíram que haviam tido muita sorte. Mesmo sendo uma situação desesperada, o acidente ocorreu cedo na missão, ainda na viagem de ida. Eles ainda tinham um módulo lunar saudável e totalmente equipado. A margem de segurança podia ser pequena, mas o módulo tinha um motor capaz de colocá-los no caminho de volta e carregava suficiente – desde que racionados – água, oxigénio e eletricidade para os quatro dias. Também havia abundância de filtros de metal de hidróxido de lítio no avariado Módulo de Comando e apesar deles não encaixarem diretamente dentro do Sistema de Controle de Ambiente do Módulo Lunar Aquarius – sendo de tamanho e formatos diferentes – certamente seria encontrado um jeito de colocá-los em uso. O 'Aquarius' havia se tornado o barco salva-vidas da tripulação.
Uma hora após o acidente, os engenheiros de voo em Centro Espacial Lyndon Johnson em Houston, estavam ocupados calculando freneticamente trajetórias e durações de funcionamento dos motores, imaginando novos procedimentos de navegação e sistemas de voo, aperfeiçoando estimativas de quanto tempo aguentaria o equipamento em estado crítico. Oxigénio era uma das menores preocupações da Apollo XIII. O Aquarius carregava generosos stocks, incluindo as mochilas de sobrevivência que Lovell e Haise deveriam usar na sua primeira AEV - atividade extra-veicular - em Fra Mauro. Para conservar seus próprios recursos físicos – e para minimizar o dióxido de carbono expelido – a tripulação teria que fazer o melhor possível para despender o mínimo de esforço. Todavia, era tranquilizador saber que eles só precisariam usar metade do seu stock de oxigénio na volta para casa. Os suprimentos de água e força eram muito mais críticos. Uma fração importante da energia elétrica guardada nas baterias do Módulo Lunar teria que ser usada durante a ignição do motor e, se os astronautas quisessem sobreviver na viagem de volta, teriam que poupar cuidadosamente o restante. Toda a eletrónica não-essencial deveria ser desligada e aquilo prometia tornar a viagem de volta fria e húmida.
A grande apreensão de todos era que não parecia possível manter as baterias do Odissey carregadas até que elas fossem necessárias para a reentrada. Sob circunstâncias normais, as células de energia do Módulo de Serviço eram usadas para manter carregadas as baterias do MC e, apenas nas últimas horas da missão, quando o MS houvesse feito seu trabalho e tivesse sido ejetado no vácuo, antes da reentrada terrestre, elas entrariam em funcionamento. Infelizmente, o acidente havia destruído as células de energia e a menos que fosse descoberto um meio de usar as baterias do Aquarius para manter a carga do Odissey, a tripulação não teria meios de controlar sua reentrada na Terra e iria morrer da mesma maneira como se tivesse se espatifado na Lua.
Desligando toda a eletrónica que podiam, a tripulação poupou força para os motores mas também cortou o consumo de água. Mesmo com a ração normal de um litro por dia, a tripulação teria bebido menos de 10% dos 150 litros de água a bordo do Módulo Lunar. Porém, com a força desligada, praticamente todos os 150 litros eram necessários para os purificadores manterem o equipamento vital refrigerado; então os astronautas cortaram sua ração para 1/5 de litro, um copo de água por dia. Eles estariam sedentos quando chegassem em casa, mas ao menos tinham uma possibilidade se salvamento.

Sobrevivência
Em grande parte, a tripulação da Apollo XIII sobreviveu à sua provação pela simples razão de terem estoques sobressalentes de artigos vitais: força extra, água, oxigénio e até um motor extra. É claro que se o acidente tivesse acontecido quando Lovell e Haise estivessem na superfície lunar ou após terem retornado à órbita com rochas, então o retorno à Terra teria sido tragicamente diferente. Mas isso era da natureza da aventura. Aceitar o desafio do Presidente John Kennedy de pousar na Lua significava a aceitação de riscos calculados.
A questão toda da sobrevivência imediata estava agora ligada a um pequeno detalhe prosaico: como ligar os filtros de limpeza do gás carbônico exalado pelos astronautas dentro do Módulo Lunar, já que o bocal destes filtros era redondo – pois o encaixe do Módulo de Comando era assim – e o encaixe no Aquarius era quadrado. Evidentemente, esse modo seria uma improvisação e um quebra-cabeça para os cientistas no controle da missão e ela foi feita através de uma engenhosa combinação de tubos, papelão, sacos plásticos de carga e filtros de metal do Módulo de Comando, todos presos juntos por uma boa quantidade de fita isolante cinza. Como era usual sempre que a equipe da Apollo tinha que improvisar, engenheiros e outros astronautas no solo se ocuparam inventando soluções para o problema e testando os resultados. Um dia e meio após o acidente, as equipes do solo haviam desenhado e construído um dispositivo de filtragem que funcionou e eles passaram as instruções por rádio para a tripulação, cuidadosamente guiando seus passos durante cerca de uma hora.

Regresso
Com o problema do dióxido de carbono resolvido, a tripulação tinha agora uma boa chance de voltar para casa. Com os três astronautas viajando no espaço dentro do Módulo Lunar, com a energia racionada – a temperatura ambiente nele era de 5°C - e com toda a força do Módulo de Comando – ao qual ele era acoplado - desligada para poupar energia, a questão era se o motor funcionaria no momento que fosse necessário, para tirá-los da órbita da Lua e colocá-los no caminho de volta. Para voltar para casa, os astronautas deveriam fazer duas ignições no motor. A primeira veio cinco horas depois do acidente e foi planeada para colocá-los numa trajetória livre de retorno, uma trajetória que os traria para casa mesmo sem uma segunda ignição. Eles ainda estavam indo em direção da Lua e não a atingiriam por quase mais um dia, mas com a primeira queima de motor completada com sucesso, quando eles girassem em volta da face escura, a gravidade lunar os colocaria no caminho de casa em vez de mandá-los para as profundezas do espaço. A segunda ignição era necessária para trazê-los de volta antes que os suprimentos da nave acabassem. Sem ela, havia uma grande possibilidade de que chegassem mortos. A chave da sobrevivência era esperar que a órbita lunar os pusesse apontando para a Terra e então o motor fosse ligado, lhes dando o impulso que os trouxesse direto de volta, em tempo de chegarem antes de acabarem o oxigénio e a água a bordo. A questão era se o motor do 'Aquarius' funcionaria.
Quando chegou o momento da ignição, e quando o mundo inteiro aguardava com a respiração suspensa, o motor ligou perfeitamente e os colocou no caminho de volta. Quando a odisseia terminou, eles tinham feito um trabalho soberbo de conservação, voltando para a Terra com 20% da força do ML e 10% de água restantes. Lovell perdeu cinco quilos de peso e estavam todos cansados, famintos, molhados, desidratados e com frio quando aterraram. Por causa da desidratação e outros fatores, Fred Haise desenvolveu uma infecção de próstata, uma febre de 40 graus e esteve seriamente doente por duas ou tres semanas após o retorno, mas tudo isso foi de importância secundária porque eles tinham voltado vivos.

in Wikipédia



quinta-feira, 12 de abril de 2012

Há 51 anos Iuri Gagarin teve a honra de ser o primeiro ser humano a viajar no espaço

Post em estereofonia com o blog AstroLeiria:

  

 «O Homem alcança o espaço» - esta foi a manchete do jornal ‘The Huntsville Times’ no dia 12 de abril de 1961, noticiando este marco histórico para a humanidade
  

Iuri Alekseievitch Gagarin (Kluchino, 9 de março de 1934 - Kirjatch, 27 de março de 1968) foi um cosmonauta soviético e o primeiro homem a viajar pelo espaço, em 12 de abril de 1961, a bordo da Vostok 1, que tinha 4,4 m de comprimento, 2,4 m de diâmetro e pesava 4.725 quilogramas. Esta nave espacial possuía dois módulos: o módulo de equipamentos (com instrumentos, antenas, tanques e combustível para os retrofoguetes) e a cápsula onde ficou o cosmonauta.
   

Primeiro homem no espaço
Cquote1.svg A Terra é azul. Como é maravilhosa. Ela é incrível! Cquote2.svg



- Iuri Gagarin
   

Com apenas 27 anos, Iuri Gagarin tornou-se o primeiro ser humano a ir ao espaço, a bordo da nave Vostok 1, na qual deu uma volta completa em órbita ao redor do planeta.
Esteve em órbita durante 108 minutos, a uma altura de 315 Km, num voo totalmente automatizado, com uma velocidade aproximada de 28.000 km/h. Pela proeza, recebeu a medalha da Ordem de Lenine.

   
A Viagem




Cquote1.svg
A nave espacial entrou em órbita, e o foguete se separou, a gravidade deixou de se sentir..
No início, a sensação era de algo incomum, mas eu adaptei-me logo ... Eu tive em contato com a Terra com diferentes canais: por telefone e telégrafo.
Cquote2.svg



Iuri Gagarin


Às nove horas e sete minutos da manhã (horário de Moscovo) do dia 12 de Abril de 1961, a cápsula com o foguete “Soyuz-R-7″ foi lançada de uma plataforma em Baikonur, no Cazaquistão. Neste voo ele disse as famosas frases:
A Terra é azul
Olhei para todos os lados, mas não vi Deus.
O Coronel Valentin Petrov afirmou em 2006 que nunca o cosmonauta disse tais palavras, e que a citação surgiu do discurso de Nikita Khrushchev no plenário do Comité Central do PCUS sobre a campanha anti-religião do Estado, dizendo que "Gagarin voou para o espaço, mas não viu qualquer deus lá." Como Gagarin era um membro da Igreja Ortodoxa Russa, é provável que ele realmente não tenha dito tais palavras.
Os cientistas russos calcularam erradamente (por duas vezes) a trajetória de aterragem da nave, (como pode ser percebido na imagem que mostra a órbita da nave). Este erro fez com que a cápsula espacial de Gagarin aterrasse no Cazaquistão, a mais de 320 quilómetros do local inicialmente previsto (que era o local de descolagem). Isto fez com que no momento da aterragem não estivesse ninguém à sua espera.
Os soviéticos declararam que Gagarin aterrou no interior da cápsula espacial, quando na realidade o astronauta utilizou de um pára-quedas para aterrar.
A União Soviética negou esse facto durante anos, com medo de o voo não ser reconhecido pelas entidades internacionais, já que o piloto não acompanhou a nave até o final.
Promovido de tenente a major enquanto ainda estava em órbita, foi com esta patente que a Agência TASS soviética anunciou este espetacular feito ao mundo, que assim tomava conhecimento de que entrava numa nova era, a Era Espacial, a partir daquele momento.